Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.958
Filtrar
1.
Sci Data ; 11(1): 353, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589407

RESUMO

Diffusion-weighted MRI (dMRI) is a widely used neuroimaging modality that permits the in vivo exploration of white matter connections in the human brain. Normative structural connectomics - the application of large-scale, group-derived dMRI datasets to out-of-sample cohorts - have increasingly been leveraged to study the network correlates of focal brain interventions, insults, and other regions-of-interest (ROIs). Here, we provide a normative, whole-brain connectome in MNI space that enables researchers to interrogate fiber streamlines that are likely perturbed by given ROIs, even in the absence of subject-specific dMRI data. Assembled from multi-shell dMRI data of 985 healthy Human Connectome Project subjects using generalized Q-sampling imaging and multispectral normalization techniques, this connectome comprises ~12 million unique streamlines, the largest to date. It has already been utilized in at least 18 peer-reviewed publications, most frequently in the context of neuromodulatory interventions like deep brain stimulation and focused ultrasound. Now publicly available, this connectome will constitute a useful tool for understanding the wider impact of focal brain perturbations on white matter architecture going forward.


Assuntos
Conectoma , Substância Branca , Humanos , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Neuroimagem , Substância Branca/diagnóstico por imagem
2.
CNS Neurosci Ther ; 30(4): e14712, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38615364

RESUMO

BACKGROUND: The specific non-motor symptoms associated with α-synucleinopathies, including orthostatic hypotension (OH), cognitive impairment, and emotional abnormalities, have been a subject of ongoing controversy over the mechanisms underlying the development of a vicious cycle among them. The distinct structural alterations in white matter (WM) in patients with α-synucleinopathies experiencing OH, alongside their association with other non-motor symptoms, remain unexplored. This study employs axial diffusivity and density imaging (NODDI) to investigate WM damage specific to α-synucleinopathies with concurrent OH, delivering fresh evidence to supplement our understanding of the pathogenic mechanisms and pathological rationales behind the occurrence of a spectrum of non-motor functional impairments in α-synucleinopathies. METHODS: This study recruited 49 individuals diagnosed with α-synucleinopathies, stratified into an α-OH group (n = 24) and an α-NOH group (without OH, n = 25). Additionally, 17 healthy controls were included for supine and standing blood pressure data collection, as well as neuropsychological assessments. Magnetic resonance imaging (MRI) was utilized for the calculation of NODDI parameters, and tract-based spatial statistics (TBSS) were employed to explore differential clusters. The fibers covered by these clusters were defined as regions of interest (ROI) for the extraction of NODDI parameter values and the analysis of their correlation with neuropsychological scores. RESULTS: The TBSS analysis unveiled specific cerebral regions exhibiting disparities within the α-OH group as compared to both the α-NOH group and the healthy controls. These differences were evident in clusters that indicated a decrease in the acquisition of the neurite density index (NDI), a reduction in the orientation dispersion index (ODI), and an increase in the isotropic volume fraction (FISO) (p < 0.05). The extracted values from these ROIs demonstrated significant correlations with clinically assessed differences in supine and standing blood pressure, overall cognitive scores, and anxiety-depression ratings (p < 0.05). CONCLUSION: Patients with α-synucleinopathies experiencing OH exhibit distinctive patterns of microstructural damage in the WM as revealed by the NODDI model, and there is a correlation with the onset and progression of non-motor functional impairments.


Assuntos
Hipotensão Ortostática , Sinucleinopatias , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Hipotensão Ortostática/diagnóstico por imagem , Encéfalo , Depressão , Anticorpos
3.
J Cell Mol Med ; 28(8): e18245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613356

RESUMO

Diffuse paediatric-type high-grade glioma, H3-wildtype and IDH-wildtype (H3/IDH-wt-pHGG) is a newly defined entity amongst brain tumours, primarily reported in children. It is a rare, ill-defined type of tumour and the only method to diagnose it is DNA methylation profiling. The case we report here carries new knowledge about this tumour which may, in fact, occur in elderly patients, be devoid of evocative genomic abnormalities reported in children and harbour a misleading mutation.


Assuntos
Neoplasias Encefálicas , Glioma , Substância Branca , Idoso , Feminino , Humanos , Criança , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Genômica , Lobo Occipital/diagnóstico por imagem
4.
Alzheimers Res Ther ; 16(1): 67, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561806

RESUMO

BACKGROUND: White matter hyperintensities (WMHs) are often measured globally, but spatial patterns of WMHs could underlie different risk factors and neuropathological and clinical correlates. We investigated the spatial heterogeneity of WMHs and their association with comorbidities, Alzheimer's disease (AD) risk factors, and cognition. METHODS: In this cross-sectional study, we studied 171 cognitively unimpaired (CU; median age: 65 years, range: 50 to 89) and 51 mildly cognitively impaired (MCI; median age: 72, range: 53 to 89) individuals with available amyloid (18F-flutementamol) PET and FLAIR-weighted images. Comorbidities were assessed using the Cumulative Illness Rating Scale (CIRS). Each participant's white matter was segmented into 38 parcels, and WMH volume was calculated in each parcel. Correlated principal component analysis was applied to the parceled WMH data to determine patterns of WMH covariation. Adjusted and unadjusted linear regression models were used to investigate associations of component scores with comorbidities and AD-related factors. Using multiple linear regression, we tested whether WMH component scores predicted cognitive performance. RESULTS: Principal component analysis identified four WMH components that broadly describe FLAIR signal hyperintensities in posterior, periventricular, and deep white matter regions, as well as basal ganglia and thalamic structures. In CU individuals, hypertension was associated with all patterns except the periventricular component. MCI individuals showed more diverse associations. The posterior and deep components were associated with renal disorders, the periventricular component was associated with increased amyloid, and the subcortical gray matter structures was associated with sleep disorders, endocrine/metabolic disorders, and increased amyloid. In the combined sample (CU + MCI), the main effects of WMH components were not associated with cognition but predicted poorer episodic memory performance in the presence of increased amyloid. No interaction between hypertension and the number of comorbidities on component scores was observed. CONCLUSION: Our study underscores the significance of understanding the regional distribution patterns of WMHs and the valuable insights that risk factors can offer regarding their underlying causes. Moreover, patterns of hyperintensities in periventricular regions and deep gray matter structures may have more pronounced cognitive implications, especially when amyloid pathology is also present.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Hipertensão , Substância Branca , Humanos , Idoso , Substância Branca/patologia , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Cognição , Proteínas Amiloidogênicas , Doença de Alzheimer/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/patologia
5.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602744

RESUMO

Although previous studies have explored the associations of white matter hyperintensity with psychiatric disorders, the sample size is small and the conclusions are inconsistent. The present study aimed to further systematically explore the association in a larger sample. All data were extracted from the UK Biobank. First, general linear regression models and logistic regression models were used to assess the association between white matter hyperintensity volume and anxiety/depression. White matter hyperintensity has been classified into periventricular white matter hyperintensity and deep white matter hyperintensity. Anxiety was determined by General Anxiety Disorder-7 score (n = 17,221) and self-reported anxiety (n = 15,333), depression was determined by Patient Health Questionnaire-9 score (n = 17,175), and self-reported depression (n = 14,519). Moreover, we employed Cox proportional hazard models to explore the association between white matter hyperintensity volume and anxiety/depression. The covariates included in fully adjusted model are age, gender, body mass index, Townsend deprivation index, healthy physical activity, cigarette consumption, alcohol consumption, educational attainment, diabetes, hypertension, and coronary heart disease. The results of the fully adjusted model showed that white matter hyperintensity volume was significantly associated with General Anxiety Disorder-7 score (periventricular white matter hyperintensity: ß = 0.152, deep white matter hyperintensity: ß = 0.094) and Patient Health Questionnaire-9 score (periventricular white matter hyperintensity: ß = 0.168). Logistic regression analysis results indicated that periventricular white matter hyperintensity volume (odds ratio = 1.153) was significantly associated with self-reported anxiety. After applying the Cox proportional hazard models, we found that larger white matter hyperintensity volume was associated with increased risk of depression (periventricular white matter hyperintensity: hazard ratio = 1.589, deep white matter hyperintensity: hazard ratio = 1.200), but not anxiety. In summary, our findings support a positive association between white matter hyperintensity volume and depression.


Assuntos
Depressão , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Transtornos de Ansiedade/diagnóstico por imagem , Transtornos de Ansiedade/epidemiologia , Ansiedade
6.
Sci Rep ; 14(1): 8212, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589467

RESUMO

Non-Verbal Learning Disability (NVLD) is a neurodevelopmental disorder characterized by deficits in processing visuospatial information but with age-appropriate verbal skills. This cognitive profile has been hypothesized to be associated with atypical white matter, but at the present there is a lack of evidence for this hypothesis. Currently, the condition is not characterized within the main diagnostic systems, in part because no clear set of criteria for characterizing the disorder exists. This report is the first attempt to estimate NVLD prevalence, using two sets of diagnostic criteria, in a large sample of over 11,000 children who were selected without regards to problems of specific nature, either psychological, neurological, physical and/or social. Furthermore, it examined the association between the profile of cognitive abilities and aspects of whole-brain white matter measures in children with and without symptoms associated with NVLD. Participants were drawn from the Adolescent Brain Cognitive Development (ABCD) study, a 10-year longitudinal study of 11,876 children in the U.S. The data used in the present study were drawn from the initial testing point at which the children were 9-10 years old. Prevalence of NVLD based on two distinct sets of criteria, correlations between the measures used to create the criteria, correlations between criteria measures and measures of white matter integrity. The cognitive criteria included measures of visuospatial processing, reading, intelligence and social skills. By varying the cut-offs applied to social skills in conjunction with visuo-spatial difficulties, spared reading skills and intelligence scores, we calculated prevalence for two NVLD groups. White matter characteristics were measures of volume, fractional anisotropy and mean diffusivity. Based on the criteria used, the estimated prevalence of NVLD varied from 1 to 8%. Furthermore, children with NVLD showed a dissociation between measures of visuo-spatial processing not observed in non-NVLD children. At the neurological level, findings provide preliminary evidence of associations between the cognitive profile of NVLD and abnormalities in white matters tracts. The present study documents that exists, within this large non-selected sample, a proportion of youth who show evidence of NVLD. Given those results, it appears essential to establish the best diagnostic criteria, to improve the treatment options and quality of life for children with this disorder.


Assuntos
Deficiências da Aprendizagem , Substância Branca , Criança , Adolescente , Humanos , Prevalência , Estudos Longitudinais , Qualidade de Vida , Deficiências da Aprendizagem/psicologia
7.
Neuroreport ; 35(7): 476-485, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38597326

RESUMO

The objective of this study is to explore the relationship between the glymphatic system and alterations in the structure and function of the brain in white matter hyperintensity (WMH) patients. MRI data were collected from 27 WMH patients and 23 healthy controls. We calculated the along perivascular space (ALPS) indices, the anterior corner distance of the lateral ventricle, and the width of the third ventricle for each subject. The DPABISurf tool was used to calculate the cortical thickness and cortical area. In addition, data processing assistant for resting-state fMRI was used to calculate regional homogeneity, degree centrality, amplitude low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF), and voxel-mirrored homotopic connectivity (VMHC). In addition, each WMH patient was evaluated on the Fazekas scale. Finally, the correlation analysis of structural indicators and functional indicators with bilateral ALPS indices was investigated using Spearman correlation analysis. The ALPS indices of WMH patients were lower than those of healthy controls (left: t = -4.949, P < 0.001; right: t = -3.840, P < 0.001). This study found that ALFF, fALFF, regional homogeneity, degree centrality, and VMHC values in some brain regions of WMH patients were alternated (AlphaSim corrected, P < 0.005, cluster size > 26 voxel, rmm value = 5), and the cortical thickness and cortical area of WMH patients showed trend changes (P < 0.01, cluster size > 20 mm2, uncorrected). Interestingly, we found significantly positive correlations between the left ALPS indices and degree centrality values in the superior temporal gyrus (r = 0.494, P = 0.009, P × 5 < 0.05, Bonferroni correction). Our results suggest that glymphatic system impairment is related to the functional centrality of local connections in patients with WMH. This provides a new perspective for understanding the pathological mechanisms of cognitive impairment in the WMH population.


Assuntos
Sistema Glinfático , Substância Branca , Humanos , Sistema Glinfático/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
8.
Crit Care ; 28(1): 118, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594772

RESUMO

BACKGROUND: This study aimed to develop an automated method to measure the gray-white matter ratio (GWR) from brain computed tomography (CT) scans of patients with out-of-hospital cardiac arrest (OHCA) and assess its significance in predicting early-stage neurological outcomes. METHODS: Patients with OHCA who underwent brain CT imaging within 12 h of return of spontaneous circulation were enrolled in this retrospective study. The primary outcome endpoint measure was a favorable neurological outcome, defined as cerebral performance category 1 or 2 at hospital discharge. We proposed an automated method comprising image registration, K-means segmentation, segmentation refinement, and GWR calculation to measure the GWR for each CT scan. The K-means segmentation and segmentation refinement was employed to refine the segmentations within regions of interest (ROIs), consequently enhancing GWR calculation accuracy through more precise segmentations. RESULTS: Overall, 443 patients were divided into derivation N=265, 60% and validation N=178, 40% sets, based on age and sex. The ROI Hounsfield unit values derived from the automated method showed a strong correlation with those obtained from the manual method. Regarding outcome prediction, the automated method significantly outperformed the manual method in GWR calculation (AUC 0.79 vs. 0.70) across the entire dataset. The automated method also demonstrated superior performance across sensitivity, specificity, and positive and negative predictive values using the cutoff value determined from the derivation set. Moreover, GWR was an independent predictor of outcomes in logistic regression analysis. Incorporating the GWR with other clinical and resuscitation variables significantly enhanced the performance of prediction models compared to those without the GWR. CONCLUSIONS: Automated measurement of the GWR from non-contrast brain CT images offers valuable insights for predicting neurological outcomes during the early post-cardiac arrest period.


Assuntos
Parada Cardíaca Extra-Hospitalar , Substância Branca , Humanos , Estudos Retrospectivos , Substância Cinzenta/diagnóstico por imagem , Parada Cardíaca Extra-Hospitalar/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Prognóstico
9.
Hum Brain Mapp ; 45(5): e26671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590252

RESUMO

There remains little consensus about the relationship between sex and brain structure, particularly in early adolescence. Moreover, few pediatric neuroimaging studies have analyzed both sex and gender as variables of interest-many of which included small sample sizes and relied on binary definitions of gender. The current study examined gender diversity with a continuous felt-gender score and categorized sex based on X and Y allele frequency in a large sample of children ages 9-11 years old (N = 7195). Then, a statistical model-building approach was employed to determine whether gender diversity and sex independently or jointly relate to brain morphology, including subcortical volume, cortical thickness, gyrification, and white matter microstructure. Additional sensitivity analyses found that male versus female differences in gyrification and white matter were largely accounted for by total brain volume, rather than sex per se. The model with sex, but not gender diversity, was the best-fitting model in 60.1% of gray matter regions and 61.9% of white matter regions after adjusting for brain volume. The proportion of variance accounted for by sex was negligible to small in all cases. While models including felt-gender explained a greater amount of variance in a few regions, the felt-gender score alone was not a significant predictor on its own for any white or gray matter regions examined. Overall, these findings demonstrate that at ages 9-11 years old, sex accounts for a small proportion of variance in brain structure, while gender diversity is not directly associated with neurostructural diversity.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Humanos , Masculino , Feminino , Adolescente , Criança , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Substância Branca/diagnóstico por imagem , Neuroimagem
10.
PLoS One ; 19(4): e0301449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626171

RESUMO

INTRODUCTION: Magnetic resonance imaging (MRI) enables the investigation of pathological changes in gray and white matter at the lumbosacral enlargement (LSE) and conus medullaris (CM). However, conducting group-level analyses of MRI metrics in the lumbosacral spinal cord is challenging due to variability in CM length, lack of established image-based landmarks, and unknown scan-rescan reliability. This study aimed to improve inter-subject alignment of the lumbosacral cord to facilitate group-level analyses of MRI metrics. Additionally, we evaluated the scan-rescan reliability of MRI-based cross-sectional area (CSA) measurements and diffusion tensor imaging (DTI) metrics. METHODS: Fifteen participants (10 healthy volunteers and 5 patients with spinal cord injury) underwent axial T2*-weighted and diffusion MRI at 3T. We assessed the reliability of spinal cord and gray matter-based landmarks for inter-subject alignment of the lumbosacral cord, the inter-subject variability of MRI metrics before and after adjusting for the CM length, the intra- and inter-rater reliability of CSA measurements, and the scan-rescan reliability of CSA measurements and DTI metrics. RESULTS: The slice with the largest gray matter CSA as an LSE landmark exhibited the highest reliability, both within and across raters. Adjusting for the CM length greatly reduced the inter-subject variability of MRI metrics. The intra-rater, inter-rater, and scan-rescan reliability of MRI metrics were the highest at and around the LSE (scan-rescan coefficient of variation <3% for CSA measurements and <7% for DTI metrics within the white matter) and decreased considerably caudal to it. CONCLUSIONS: To facilitate group-level analyses, we recommend using the slice with the largest gray matter CSA as a reliable LSE landmark, along with an adjustment for the CM length. We also stress the significance of the anatomical location within the lumbosacral cord in relation to the reliability of MRI metrics. The scan-rescan reliability values serve as valuable guides for power and sample size calculations in future longitudinal studies.


Assuntos
Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Medula Espinal/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem
11.
Sci Rep ; 14(1): 8822, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627570

RESUMO

HIV exposed-uninfected (HEU) infants and children are at risk of developmental delays as compared to HIV uninfected unexposed (HUU) populations. The effects of exposure to in utero HIV and ART regimens on the HEU the developing brain are not well understood. In a cohort of 2-week-old newborns, we used diffusion tensor imaging (DTI) tractography and graph theory to examine the influence of HIV and ART exposure in utero on neonate white matter integrity and organisation. The cohort included HEU infants born to mothers who started ART before conception (HEUpre) and after conception (HEUpost), as well as HUU infants from the same community. We investigated HIV exposure and ART duration group differences in DTI metrics (fractional anisotropy (FA) and mean diffusivity (MD)) and graph measures across white matter. We found increased MD in white matter connections involving the thalamus and limbic system in the HEUpre group compared to HUU. We further identified reduced nodal efficiency in the basal ganglia. Within the HEUpost group, we observed reduced FA in cortical-subcortical and cerebellar connections as well as decreased transitivity in the hindbrain area compared to HUU. Overall, our analysis demonstrated distinct alterations in white matter integrity related to the timing of maternal ART initiation that influence regional brain network properties.


Assuntos
Infecções por HIV , Substância Branca , Lactente , Criança , Feminino , Humanos , Recém-Nascido , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão , Infecções por HIV/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Mães
12.
BMC Psychiatry ; 24(1): 287, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627646

RESUMO

BACKGROUND: Childhood maltreatment (CM) is associated with neurobiological aberrations and atypical social cognition. Few studies have examined the neural effects of another common early-life interpersonal stressor, namely peer victimisation (PV). This study examines the associations between tract aberrations and childhood interpersonal stress from caregivers (CM) and peers (PV), and explores how the observed tract alterations are in turn related to affective theory of mind (ToM). METHODS: Data from 107 age-and gender-matched youths (34 CM [age = 19.9 ± 1.68; 36%male], 35 PV [age = 19.9 ± 1.65; 43%male], 38 comparison subjects [age = 20.0 ± 1.66; 42%male] were analysed using tractography and whole-brain tract-based spatial statistics (TBSS). RESULTS: At the whole-brain level using TBSS, the CM group had higher fractional anisotropy (FA) than the PV and comparison groups in a cluster of predominantly limbic and corpus callosal pathways. Segmented tractography indicated the CM group had higher FA in right uncinate fasciculus compared to both groups. They also had smaller right anterior thalamic radiation (ATR) tract volume than the comparison group and higher left ATR FA than the PV group, with these metrics associated with higher emotional abuse and enhanced affective ToM within the CM group, respectively. The PV group had lower inferior fronto-occipital fasciculus FA than the other two groups, which was related to lower affective ToM within the PV group. CONCLUSION: Findings suggest that exposure to early-life stress from caregivers and peers are differentially associated with alterations of neural pathways connecting the frontal, temporal and occipital cortices involved in cognitive and affective control, with possible links to their atypical social cognition.


Assuntos
Maus-Tratos Infantis , Substância Branca , Adolescente , Humanos , Masculino , Adulto Jovem , Adulto , Criança , Cognição Social , Imagem de Tensor de Difusão , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Anisotropia
13.
PLoS One ; 19(4): e0299703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630707

RESUMO

Vascular cognitive impairment (VCI) is the second leading cause of dementia with limited treatment options, characterised by cerebral hypoperfusion-induced white matter rarefaction (WMR). Subcortical VCI is the most common form of VCI, but the underlying reasons for region susceptibility remain elusive. Recent studies employing the bilateral cortical artery stenosis (BCAS) method demonstrate that various inflammasomes regulate white matter injury and blood-brain barrier dysfunction but whether caspase-1 inhibition will be beneficial remains unclear. To address this, we performed BCAS on C57/BL6 mice to study the effects of Ac-YVAD-cmk, a caspase-1 inhibitor, on the subcortical and cortical regions. Cerebral blood flow (CBF), WMR, neuroinflammation and the expression of tight junction-related proteins associated with blood-brain barrier integrity were assessed 15 days post BCAS. We observed that Ac-YVAD-cmk restored CBF, attenuated BCAS-induced WMR and restored subcortical myelin expression. Within the subcortical region, BCAS activated the NLRP3/caspase-1/interleukin-1beta axis only within the subcortical region, which was attenuated by Ac-YVAD-cmk. Although we observed that BCAS induced significant increases in VCAM-1 expression in both brain regions that were attenuated with Ac-YVAD-cmk, only ZO-1 and occludin were observed to be significantly altered in the subcortical region. Here we show that caspase-1 may contribute to subcortical regional susceptibility in a mouse model of VCI. In addition, our results support further investigations into the potential of Ac-YVAD-cmk as a novel treatment strategy against subcortical VCI and other conditions exhibiting cerebral hypoperfusion-induced WMR.


Assuntos
Clorometilcetonas de Aminoácidos , Disfunção Cognitiva , Substância Branca , Animais , Camundongos , Substância Branca/metabolismo , Encéfalo/metabolismo , Caspase 1/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
14.
PLoS One ; 19(4): e0301964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630783

RESUMO

The neuronal differences contributing to the etiology of autism spectrum disorder (ASD) are still not well defined. Previous studies have suggested that myelin and axons are disrupted during development in ASD. By combining structural and diffusion MRI techniques, myelin and axons can be assessed using extracellular water, aggregate g-ratio, and a new approach to calculating axonal conduction velocity termed aggregate conduction velocity, which is related to the capacity of the axon to carry information. In this study, several innovative cellular microstructural methods, as measured from magnetic resonance imaging (MRI), are combined to characterize differences between ASD and typically developing adolescent participants in a large cohort. We first examine the relationship between each metric, including microstructural measurements of axonal and intracellular diffusion and the T1w/T2w ratio. We then demonstrate the sensitivity of these metrics by characterizing differences between ASD and neurotypical participants, finding widespread increases in extracellular water in the cortex and decreases in aggregate g-ratio and aggregate conduction velocity throughout the cortex, subcortex, and white matter skeleton. We finally provide evidence that these microstructural differences are associated with higher scores on the Social Communication Questionnaire (SCQ) a commonly used diagnostic tool to assess ASD. This study is the first to reveal that ASD involves MRI-measurable in vivo differences of myelin and axonal development with implications for neuronal and behavioral function. We also introduce a novel formulation for calculating aggregate conduction velocity, that is highly sensitive to these changes. We conclude that ASD may be characterized by otherwise intact structural connectivity but that functional connectivity may be attenuated by network properties affecting neural transmission speed. This effect may explain the putative reliance on local connectivity in contrast to more distal connectivity observed in ASD.


Assuntos
Transtorno do Espectro Autista , Substância Branca , Adolescente , Humanos , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/patologia , Córtex Cerebral , Encéfalo/patologia
15.
Alzheimers Res Ther ; 16(1): 72, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581060

RESUMO

BACKGROUND: Vascular dysfunction was recently reported to be involved in the pathophysiological process of neurodegenerative diseases, but its role in sporadic behavioral variant frontotemporal dementia (bvFTD) remains unclear. The aim of this study was to systematically explore vascular dysfunction, including changes in white matter hyperintensities (WMHs) and peripheral vascular markers in bvFTD. METHODS: Thirty-two patients with bvFTD who with no vascular risk factors were enrolled in this cross-sectional study and assessed using positron emission tomography/magnetic resonance (PET/MRI) imaging, peripheral plasma vascular/inflammation markers, and neuropsychological examinations. Group differences were tested using Student's t-tests and Mann-Whitney U tests. A partial correlation analysis was implemented to explore the association between peripheral vascular markers, neuroimaging, and clinical measures. RESULTS: WMH was mainly distributed in anterior brain regions. All peripheral vascular factors including matrix metalloproteinases-1 (MMP-1), MMP-3, osteopontin, and pentraxin-3 were increased in the bvFTD group. WMH was associated with the peripheral vascular factor pentraxin-3. The plasma level of MMP-1 was negatively correlated with the gray matter metabolism of the frontal, temporal, insula, and basal ganglia brain regions. The WMHs in the frontal and limbic lobes were associated with plasma inflammation markers, disease severity, executive function, and behavior abnormality. Peripheral vascular markers were associated with the plasma inflammation markers. CONCLUSIONS: WMHs and abnormalities in peripheral vascular markers were found in patients with bvFTD. These were found to be associated with the disease-specific pattern of neurodegeneration, indicating that vascular dysfunction may be involved in the pathogenesis of bvFTD. This warrants further confirmation by postmortem autopsy. Targeting the vascular pathway might be a promising approach for potential therapy.


Assuntos
Demência Frontotemporal , Substância Branca , Humanos , Demência Frontotemporal/metabolismo , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Transversais , Metaloproteinase 1 da Matriz/metabolismo , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/patologia , Testes Neuropsicológicos , Biomarcadores/metabolismo , Inflamação/patologia
16.
JAMA Netw Open ; 7(4): e248121, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635266

RESUMO

Importance: Mild traumatic brain injury (mTBI) is the signature injury experienced by military service members and is associated with poor neuropsychiatric outcomes. Yet, there is a lack of reliable clinical tools for mTBI diagnosis and prognosis. Objective: To examine the white matter microstructure and neuropsychiatric outcomes of service members with a remote history of mTBI (ie, mTBI that occurred over 2 years ago) using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Design, Setting, and Participants: This case-control study examined 98 male service members enrolled in a study at the National Intrepid Center of Excellence. Eligible participants were active duty status or able to enroll in the Defense Enrollment Eligibility Reporting system, ages 18 to 60 years, and had a remote history of mTBI; controls were matched by age. Exposures: Remote history of mTBI. Main Outcomes and Measures: White matter microstructure was assessed using a region-of-interest approach of skeletonized diffusion images, including DTI (fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity) and NODDI (orientation dispersion index [ODI], isotropic volume fraction, intra-cellular volume fraction). Neuropsychiatric outcomes associated with posttraumatic stress disorder (PTSD) and postconcussion syndrome were assessed. Results: A total of 65 male patients with a remote history of mTBI (mean [SD] age, 40.5 [5.0] years) and 33 age-matched male controls (mean [SD] age, 38.9 [5.6] years) were included in analysis. Compared with the control cohort, the 65 service members with mTBI presented with significantly more severe PTSD-like symptoms (mean [SD] PTSD CheckList-Civilian [PCL-C] version scores: control, 19.0 [3.8] vs mTBI, 41.2 [11.6]; P < .001). DTI and NODDI metrics were altered in the mTBI group compared with the control, including intra-cellular volume fraction of the right cortico-spinal tract (ß = -0.029, Cohen d = 0.66; P < .001), ODI of the left posterior thalamic radiation (ß = -0.006, Cohen d = 0.55; P < .001), and ODI of the left uncinate fasciculus (ß = 0.013, Cohen d = 0.61; P < .001). In service members with mTBI, fractional anisotropy of the left uncinate fasciculus was associated with postconcussion syndrome (ß = 5.4 × 10-3; P = .003), isotropic volume fraction of the genu of the corpus callosum with PCL-C (ß = 4.3 × 10-4; P = .01), and ODI of the left fornix and stria terminalis with PCL-C avoidance scores (ß = 1.2 × 10-3; P = .02). Conclusions and Relevance: In this case-control study of military-related mTBI, the results suggest that advanced magnetic resonance imaging techniques using NODDI can reveal white matter microstructural alterations associated with neuropsychiatric symptoms in the chronic phase of mTBI. Diffusion trends observed throughout widespread white matter regions-of-interest may reflect mechanisms of neurodegeneration as well as postinjury tissue scarring and reorganization.


Assuntos
Concussão Encefálica , Militares , Síndrome Pós-Concussão , Substância Branca , Humanos , Masculino , Adulto , Pré-Escolar , Imagem de Tensor de Difusão , Estudos de Casos e Controles
17.
Cell Mol Neurobiol ; 44(1): 33, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625414

RESUMO

Subarachnoid hemorrhage (SAH) is associated with high mortality and disability rates, and secondary white matter injury is an important cause of poor prognosis. However, whether brain capillary pericytes can directly affect the differentiation and maturation of oligodendrocyte precursor cells (OPCs) and subsequently affect white matter injury repair has still been revealed. This study was designed to investigate the effect of tissue inhibitor of metalloproteinase-3 (TIMP-3) for OPC differentiation and maturation. PDGFRßret/ret and wild-type C57B6J male mice were used to construct a mouse model of SAH via endovascular perforation in this study. Mice were also treated with vehicle, TIMP-3 RNAi or TIMP-3 RNAi + TIMP-3 after SAH. The effect of TIMP-3 on the differentiation and maturation of OPCs was determined using behavioral score, ELISA, transmission electron microscopy, immunofluorescence staining and cell culture. We found that TIMP-3 was secreted mainly by pericytes and that SAH and TIMP-3 RNAi caused a significant decrease in the TIMP-3 content, reaching a nadir at 24 h, followed by gradual recovery. In vitro, the myelin basic protein content of oligodendrocytes after oxyhemoglobin treatment was increased by TIMP-3 overexpression. The data indicates TIMP-3 could promote the differentiation and maturation of OPCs and subsequently improve neurological outcomes after SAH. Therefore, TIMP-3 could be beneficial for repair after white matter injury and could be a potential therapeutic target in SAH.


Assuntos
Células Precursoras de Oligodendrócitos , Hemorragia Subaracnóidea , Substância Branca , Masculino , Animais , Camundongos , Inibidor Tecidual de Metaloproteinase-3 , Encéfalo
18.
PLoS One ; 19(4): e0300415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626023

RESUMO

INTRODUCTION: Multiple Sclerosis (MS) is a chronic neurodegenerative disorder that affects the central nervous system (CNS) and results in progressive clinical disability and cognitive decline. Currently, there are no specific imaging parameters available for the prediction of longitudinal disability in MS patients. Magnetic resonance imaging (MRI) has linked imaging anomalies to clinical and cognitive deficits in MS. In this study, we aimed to evaluate the effectiveness of MRI in predicting disability, clinical progression, and cognitive decline in MS. METHODS: In this study, according to PRISMA guidelines, we comprehensively searched the Web of Science, PubMed, and Embase databases to identify pertinent articles that employed conventional MRI in the context of Relapsing-Remitting and progressive forms of MS. Following a rigorous screening process, studies that met the predefined inclusion criteria were selected for data extraction and evaluated for potential sources of bias. RESULTS: A total of 3028 records were retrieved from database searching. After a rigorous screening, 53 records met the criteria and were included in this study. Lesions and alterations in CNS structures like white matter, gray matter, corpus callosum, thalamus, and spinal cord, may be used to anticipate disability progression. Several prognostic factors associated with the progression of MS, including presence of cortical lesions, changes in gray matter volume, whole brain atrophy, the corpus callosum index, alterations in thalamic volume, and lesions or alterations in cross-sectional area of the spinal cord. For cognitive impairment in MS patients, reliable predictors include cortical gray matter volume, brain atrophy, lesion characteristics (T2-lesion load, temporal, frontal, and cerebellar lesions), white matter lesion volume, thalamic volume, and corpus callosum density. CONCLUSION: This study indicates that MRI can be used to predict the cognitive decline, disability progression, and disease progression in MS patients over time.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos , Atrofia/diagnóstico por imagem , Atrofia/patologia , Esclerose Múltipla Recidivante-Remitente/patologia
19.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200213, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564686

RESUMO

BACKGROUND AND OBJECTIVES: In progressive multiple sclerosis (MS), compartmentalized inflammation plays a pivotal role in the complex pathology of tissue damage. The interplay between epigenetic regulation, transcriptional modifications, and location-specific alterations within white matter (WM) lesions at the single-cell level remains underexplored. METHODS: We examined intracellular and intercellular pathways in the MS brain WM using a novel dataset obtained by integrated single-cell multi-omics techniques from 3 active lesions, 3 chronic active lesions, 3 remyelinating lesions, and 3 control WM of 6 patients with progressive MS and 3 non-neurologic controls. Single-nucleus RNA-seq and ATAC-seq were combined and additionally enriched with newly conducted spatial transcriptomics from 1 chronic active lesion. Functional gene modules were then validated in our previously published bulk tissue transcriptome data obtained from 73 WM lesions of patients with progressive MS and 25 WM of non-neurologic disease controls. RESULTS: Our analysis uncovered an MS-specific oligodendrocyte genetic signature influenced by the KLF/SP gene family. This modulation has potential associations with the autocrine iron uptake signaling observed in transcripts of transferrin and its receptor LRP2. In addition, an inflammatory profile emerged within these oligodendrocytes. We observed unique cellular endophenotypes both at the periphery and within the chronic active lesion. These include a distinct metabolic astrocyte phenotype, the importance of FGF signaling among astrocytes and neurons, and a notable enrichment of mitochondrial genes at the lesion edge populated predominantly by astrocytes. Our study also identified B-cell coexpression networks indicating different functional B-cell subsets with differential location and specific tendencies toward certain lesion types. DISCUSSION: The use of single-cell multi-omics has offered a detailed perspective into the cellular dynamics and interactions in MS. These nuanced findings might pave the way for deeper insights into lesion pathogenesis in progressive MS.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Epigênese Genética , Multiômica , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Crônica Progressiva/patologia , Substância Branca/patologia
20.
Transl Psychiatry ; 14(1): 177, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575556

RESUMO

Excessive iron accumulation in the brain cortex increases the risk of cognitive deterioration. However, interregional relationships (defined as susceptibility connectivity) of local brain iron have not been explored, which could provide new insights into the underlying mechanisms of cognitive decline. Seventy-six healthy controls (HC), 58 participants with mild cognitive impairment due to probable Alzheimer's disease (MCI-AD) and 66 participants with white matter hyperintensity (WMH) were included. We proposed a novel approach to construct a brain susceptibility network by using Kullback‒Leibler divergence similarity estimation from quantitative susceptibility mapping and further evaluated its topological organization. Moreover, sparse logistic regression (SLR) was applied to classify MCI-AD from HC and WMH with normal cognition (WMH-NC) from WMH with MCI (WMH-MCI).The altered susceptibility connectivity in the MCI-AD patients indicated that relatively more connectivity was involved in the default mode network (DMN)-related and visual network (VN)-related connectivity, while more altered DMN-related and subcortical network (SN)-related connectivity was found in the WMH-MCI patients. For the HC vs. MCI-AD classification, the features selected by the SLR were primarily distributed throughout the DMN-related and VN-related connectivity (accuracy = 76.12%). For the WMH-NC vs. WMH-MCI classification, the features with high appearance frequency were involved in SN-related and DMN-related connectivity (accuracy = 84.85%). The shared and specific patterns of the susceptibility network identified in both MCI-AD and WMH-MCI may provide a potential diagnostic biomarker for cognitive impairment, which could enhance the understanding of the relationships between brain iron burden and cognitive decline from a network perspective.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...